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Self-organizing map (SOM) and learning vector quantification network (LVQ) models have been
explored for the identification of edible and vegetable oils and to detect adulteration of extra virgin
olive oil (EVOO) using the most common chemicals in these oils, viz. saturated fatty (mainly palmitic
and stearic acids), oleic and linoleic acids. The optimization and validation processes of the models
have been carried out using bibliographical sources, that is, a database for developing learning process
and internal validation, and six other different databases to perform their external validation. The
model’s performances were analyzed by the number of misclassifications. In the worst of the cases,
the SOM and LVQ models are able to classify more than the 94% of samples and detect adulterations
of EVOO with corn, soya, sunflower, and hazelnut oils when their oil concentrations are higher than
10, 5, 5, and 10%, respectively.
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INTRODUCTION

The adulteration of food products with cheaper and more
available substitutes is a typical worldwide problem that has existed
for centuries. In recent decades, due to the high price of extra virgin
olive oil (EVOO), an appreciable incidence of adulteration has been
detected. The substitution or adulteration of EVOO with cheaper
ingredients is not only an economic fraud but may also on occasions
have severe health implications for consumers, an example being
the Spanish toxic oil syndrome (1, 2).

Extra virgin olive oil is subject to two types of adulteration.
In the first group, the EVOO is blended with low-grade olive
oils (olive-pomace oil, virgin olive oil obtained by a second
centrifugation of the olives, or refined olive oils). The second
consists of mixing EVOO with other cheaper similar products
such as seed oils (hazelnut, sunflower oil, maize, corn, soybean,
palm, etc.) (2-4). Given the chemical similarities of EVOO
and hazelnut oil, this adulteration is difficult to detect, especially
when its concentration is less than 20% (2, 3).

Although EVOO quality can be checked by chemical indices
and organoleptic assessment (5), there is no single analytical
index to determine the protected denomination of origin, their
geographical origin, or even the olive fruit variety (6). That is
why the determination of the adulteration of EVOO or the
classification of the vegetable oils, concentrations of chemicals
present in the oils (acids, sterols, polyphenols, etc.), and their

physicochemical properties (density, refractive index, saponi-
fication value, etc.) should be quantified (5, 7). These can be
determined using a wide number of chemometric tools which
are based on techniques such as nuclear magnetic resonance
spectroscopy (NMR) (8), Fourier transform Raman spectroscopy
(9), gas chromatography (GC), high performance liquid chro-
matography (HPLC) (10), fluorescence spectroscopy (11), etc.

To extract the most relevant information from those huge
databases of the characteristics, composition, and concentration
of chemicals of each vegetable oil, statistical techniques are
required. Some of the most important techniques are linear
algorithms such as principal component analysis (PCA) (2, 4),
multivariate regression techniques (3, 8), or nonlinear algorithms
such as artificial neural networks.

Two of the most used competitive neural networks algorithms
used are self-organizing maps (SOMs) and learning vector
quantization networks (LVQs) models. SOM models have been
successfully used to identify crude oils (12) and the plant
communities in Pangquangou Nature Reserve, North China (13),
as well as to plan irrigation strategies in places where water
resources are scarce (14). LVQ models have been used to
recognize facial expression (15) and to classify nucleic acid and
protein sequences (16). For instance, SOM models have been
used in the discrimination of wines (17) or between brands of
milk (18). To the best of our knowledge, in the vegetable oil
field, SOM models have hardly been used and the LVQ model
applications are even scarcer. One of the few applications of
SOM models was developed by Brodnjak-Voncinaet et al., who
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used a Kohonen neural network to cluster vegetable oil samples
(10). Marini et al. used this type of model to select the adequate
training, verification, and validation samples used by a feed forward
neural network in order to resolve binary blends of monocultivar
Italian olive oils (19). Given the successful results achieved in other
scientific fields and the recognition capability of groups with similar
characteristics (using SOM models) (20, 21) and that even these
groups can be in addition classified in target classes defined by
the user (using LVQ models) (21, 22), linear (PCA) and nonlinear
algorithms (SOM or LVQ models) have been applied here in the
vegetable oil area.

The objective of this work is the application of a principal
component analysis technique, self-organizing map and learning
vector quantification networks to identify 13 edible vegetable
oils (hazelnut, sunflower, corn, soybean, sesame, walnut,
rapeseed, almond, palm, groundnut, safflower, coconut, and extra
virgin olive oils) and detect adulterations of EVOO with seed
oils (corn, soya, sunflower and hazelnut oils) using only their
saturated fatty (mainly palmitic and stearic acids), oleic, and
linoleic acid concentration values.

MATERIAL AND METHODS

Edible Vegetable Oils. To design and optimize both SOM and
LVQ models a database of saturated fatty, oleic, and linoleic acid
concentrations of 13 types of edible vegetable oils (192 samples)
was used. Their mean repeatability and reproducibility values are
less than 2 and 2.5%, respectively (8). In order to test the
performance of optimized SOM and LVQ models related to the
classification of vegetable oils and detection of adulteration of EVOO
with seeds oils, another seven bibliographical references (263
samples) were employed (1, 6, 8, 10, 23-25).

Principal Component Analysis. Principal component analysis is a
classical unsupervised technique based on linear algebra. It involves a
mathematical procedure, which transforms a number of possibly
correlated variables into a smaller number of uncorrelated variables
called principal components (PCs). The principal components are linear
combinations of the original variables. The first principal component
accounts for most of the variability in the data, and each succeeding
component accounts for as much of the remaining variability as possible.
This linear transformation has been widely used in data analysis, in
exploratory tools to uncover unknown trends in the data, compression,
etc. (26).

In this work, the PCA technique has been applied to check and select
the most important information from the aforementioned database. Then,
using the selected information, two different nonlinear models were
designed and applied (vide infra). Principal component analysis was
carried out by SPSS software version 15.0.

Self-Organizing Maps. Self-organizing maps or the Kohonen neural
network is one of the most interesting topics in the competitive neural
network field (20). SOM models can learn to detect irregularities and
correlations in their input and adapt their future responses to that input
accordingly; that is, they are able to recognize groups with similar
characteristics (20, 21). The architecture of SOM models is shown in
Figure 1. Every circle and arrow represent a neuron and weight,
respectively; that is, there are as many weights as arrows and the number
of neurons is equal to the product of the width and length of the
competitive layer. In this layer, each neuron has as many weights as
the input descriptors (SFA, oleic, and linoleic acids), Figure 1. Every
neuron is represented by a vector of weights.

Given that self-organizing maps classify input data according to
how they are grouped in the input space, along the leaning process,
in order to adequately represent all input data, its weights are
optimized. As every neuron is represented as a weight vector, during
this process, the neurons look for the best place to represent the
whole input database. The learning process of the SOM involved
two steps viz. ordering and tuning phases (21). In the former, the
ordering phase learning rate (OLr) and neighborhood distance (ND)
are decreased from both that rate and the maximum ND between

two neurons to the tuning phase learning rate (TLr) and the tuning
phase neighborhood distance, respectively. The ordering phase lasts
for a given number of steps (named ordering phase steps, OP). In
the latter, the learning rate is decreased much more slowly than in
the ordering phase while the ND remains constant. Therefore, the
number of epochs for the tuning phase of the SOM learning process
should be much larger than the number of steps in the ordering
phase. Given that the SOM model is a competitive and unsupervised
neural network, their weight optimization can be summarized in five
stages: (i) assign random values to the weights; (ii) a data set from
the learning sample is presented to the SOM; (iii) the neuron with
the least Euclidean distance between its weights and data set (D) is
selected, eq 1. It is called the winning neuron. (iv) The weights of
the selected neuron are optimized so that they become more similar
to the input vector, eq 2; (v) the weight of the neighborhood neurons
are also optimized but with proportionally less Euclidean distance
to wining neuron eq 3. The process is repeated iteratively. When
the whole database has been presented to the SOM an epoch has
finalized (12). Once the SOM has been trained, this is able to extract
the relevant information in order to classify new input vectors (which
are interpolated in the learning range).

where W, n, X, Lr, N and S are the weights, iteration of a given
epoch, input vector, learning rate, number of weights of the SOM,
and number of data set of the learning sample, respectively (14, 21).
The SOM model used in this work was designed using Matlab
version 7.01.24704 (R14) (21).

Learning Vector Quantization Networks. LVQ models can classify
any set of input vectors, not only linearly separable sets of input vectors.
The only requirement is that the competitive layer must have enough
neurons, and each class must be assigned enough competitive neurons
(22). LVQ models classify input vectors into target classes by using a
competitive layer to find subclasses of input vectors, and then,
combining them into the target classes defined by the user. Therefore,
LVQ networks consist of two layers viz., unsupervised (competitive)
and supervised (linear) layers (21).

The competitive layer learns to classify input vectors in much the
same way as the competitive layers of self-organizing maps (vide supra).
The linear layer transforms the competitive layer’s classes into target
classifications defined by the user. The linear layers have one neuron
per class (21). The LVQ model used in this work was designed using
Matlab version 7.01.24704 (R14).

Figure 1. Schematic diagram of self-organizing map model.
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RESULTS AND DISCUSSION

Learning, Verification and Validation Samples. The learn-
ing, verification, and validation samples were used to carry out
the optimization, internal, and external validation of the models,
respectively. The optimization and internal validation processes
of the SOM and LVQ models have been developed using data
from the literature (8). These data consist of values of the acidity,
iodine value, ratio of 1,2-diglycerides to the total diglycerides
and the concentrations of total sterols, total diglycerides, 1,2-
diglycerides, 1,3-diglycerides, saturated fatty (SFA), oleic,
linolenic, and linoleic acids determined by analysis of the
respective 1H NMR and 31P NMR spectra (8). These properties
were calculated in 192 samples corresponding to 13 types of
vegetables oils (hazelnut, sunflower, corn, soybean, sesame,
walnut, rapeseed, almond, palm, groundnut, safflower, coconut,
and extra virgin olive oils). In order to test the adulteration
detection capability of SOM and LVQ models, the aforemen-
tioned properties were also measured and calculated in 28
samples which consist of the mixture of EVOO/corn oil (6
samples), EVOO/soya (6 samples), EVOO/sunflower oil
(6 samples), and EVOO/hazelnut oil (10 samples) (8).

Finally, in order to test the competence of the optimized
models, an external validation process was carried out using
other bibliographical references (1, 6, 10, 23-25).

The learning, verification, and validation samples are com-
posed of data that characterize the classification process. The
applicability domain of the data used in the learning, internal
and external validation processes was evaluated following the
calculation process described in the literature (27, 28), which
consists of determining the compounds with cross-validated
standardized residuals greater than three standard deviation
values. The widest dispersion is presented in the SFA data (<3.6
standard deviation), where the coconut and almond oils present
the highest and the lowest ranges of values, respectively. As
these oils form two of the 13 types of oils, these samples are
not considered as outliers.

In order to select the most important variables, the underlying
information of the database used should be revealed. With this
objective, the PCA technique has been applied. As can be seen
in Figure 2, there are three independent groups of important
chemicals (a, b, and c). At least one chemical of each group
should be selected to represent adequately the input information.
In addition, the SFA (palmitic and stearic acids), oleic, and
linoleic acids are present in all oil types used here and in most
edible vegetable oils (5, 7). As the selection of SFA, oleic, and
linoleic acids compounds fulfilled the aforementioned condition,
these compounds were selected.

Figure 2. Principal component score plot.

Table 1. Correlation Coefficient (R2) between 13 Concentrations and Index for 192 Oil Samples (8)a

DG12 DG13 total D sterols acidity linolenic linoleic oleic SFA iodine

DG12 1
DG13 0.006 1
total 0.118 0.903 1
D 0.444 0.075 0.000 1
sterols 0.057 0.006 0.001 0.132 1
acidity 0.370 0.007 0.031 0.264 0.170 1
linolenic 0.114 0.179 0.069 0.195 0.135 0.408 1
linoleic 0.026 0.316 0.373 0.008 0.024 0.092 0.125 1
oleic 0.301 0.015 0.125 0.163 0.265 0.679 0.060 0.316 1
SFA 0.607 0.000 0.114 0.476 0.016 0.904 0.282 0.138 0.757 1
iodine 0.002 0.917 0.728 0.124 0.170 0.010 0.398 0.594 0.048 0.000 1

a DG12, 1,2-diglycerides; DG13, 1,3-diglycerides; total, ratio of 1,2-diglycerides to the total diglycerides; D, total diglycerides; sterols, sterols concentration; linolenic,
linolenic concentration; linolenic, linolenic concentration; oleic, oleic concentration; SFA, saturated fatty acids; iodine, iodine value.
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In order to remove the possible data redundancy in the input
data, mutual correlation coefficients between 1,2-diglycerides
(DG12), 1,3-diglycerides (DG13), the ratio of 1,2-diglycerides
to total diglycerides (total), acidity, iodine value, and fatty acid

composition (SFA) were calculated, Table 1. Correlation
coefficients higher than 0.9 were found in three cases viz. DG13
and total, DG13 and iodine value and acidity and SFA. These
results are in agreement with those found using the PCA
technique (all three characteristics belonging to group a, Figure
2). Finally, as acidity and SFA belong respectively to groups b
and c and there is a mathematical correlation between them (R2

) 0.904), only one should be chosen. Therefore, there are no
redundancies in the input data.

All three samples (learning, verification, and validation) have
the same format. These have as many rows as variables
necessary to characterize the process (concentrations of SFA,
oleic and linoleic acids) and the same number of columns as
the number of vectors to describe the system to be studied.
Whole database has been distributed randomly into learning
(80%) and verification (20%) samples. The learning, verification,
and validation samples dimensions are 154 × 3, 38 × 3, and
263 × 3, respectively. The dimension of the validation sample
is studied in more detail below.

Self-Organizing Map Optimization. A nonlinear mapping
method was used to classify the aforementioned 13 types of
oils. The output neurons were arranged in three different

Figure 3. Position of the neurons of the self-organizing map along its learning process: (a) initial distribution (hexagonal topology); (b) final positions of
the neurons (red open dots) and the learning and verification samples (O) (8).

Table 2. Database Used to Carry out the Internal Validation of SOM and
LVQ Models (8)

no. of misclassifications

type of oil no. of samples SOM model LVQ model

almond 3 0 0
coconut 2 0 0
corn 2 0 0
EVOO 5 0 0
groundnut 5 0 0
hazelnut 3 1 1
palm 2 0 0
rapeseed 2 0 0
safflower 2 0 0
sesame 2 0 0
soya 2 0 0
sunflower 4 0 0
walnut 4 0 0
total 38 1 1
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topological grids viz. grid (G), hexagonal (H), and random (R)
topologies. In addition, three different methods to calculate the
distances were used, viz. link (the number of links, or steps,
which must be taken to reach the neuron under consideration,
L), Euclidean (vide supra, E) and Manhattan (vide infra, M)
distances (21). To classify the edible oil samples in the most
reliable way possible, both topologies and distance were
combined and the best pair was selected. Following the

manufacturer’s indications, throughout the selection process, all
other parameters were maintained constant and fixed by default
(OLr, OP, TLr, ND and the dimension of the network was equal
to 0.9, 1000, 0.02, 1, and 5 × 8, respectively) (21). In most of
the nine possible combinations, between 10 to 12% of EVOO
and hazelnut oil samples from verification sample were mis-
classified as hazelnut, sunflower, and EVOO oils. The combina-
tion of hexagonal topology and Manhattan distance, eq 4, was
the best combination, misclassifying only less than 5% of the
EVOO samples (verification sample). Therefore, this combina-
tion was selected.

Table 3. Databases Used to Carry out the External Validations of SOM
and LVQ Models

no. of
misclassifications

type of oil
no. of

samples ref
SOM
model

LVQ
model

coconut 2 Lee et al., 1998 (1) 0 0
1 Gan et al., 2005 (23) 0 0

corn 3 Lee et al., 1998 (1) 0 0
1 Gan et al., 2005 (23) 0 0
2 Brodnjak-Voncina et al., 2005 (10) 0 0

EVOO 27 Spangenberg et al., 1998 (24) 2 3
15 Marini et al., 2004 (7) 1 1

137 Dais et al., 2007 (25) 6 7
1 Gan et al., 2005 (23) 0 0

groundnut 1 Spangenberg et al., 1998 (24) 0 0
hazelnut 1 Spangenberg et al., 1998 (24) 0 0

1 Gan et al., 2005 (23) 0 0
palm 1 Gan et al., 2005 (23) 0 0
rapeseed 2 Lee et al., 1998 (1) 0 0

1 Gan et al., 2005 (23) 0 0
10 Brodnjak-Voncina et al., 2005 (10) 0 0

sesame 10 Lee et al., 1998 (1) 0 0
1 Gan et al., 2005 (23) 0 0

sunflower 2 Spangenberg et al., 1998 (24) 0 0
1 Gan et al., 2005 (23) 0 0

13 Brodnjak-Voncina et al., 2005 (10) 2 2
walnut 1 Spangenberg et al., 1998 (24) 0 0

1 Gan et al., 2005 (23) 0 0
total 235 11 13

Table 4. Database Used To Determine the Capacity to Detect Adulteration
of EVOO by SOM and LVQ Models (8)

no. of misclassifications

EVOO + type of oil (%) SOM model LVQ model

corn
5 1 1

10 0 0
15 0 0
20 0 0
35 0 0
50 0 0

soya
5 0 0

10 0 0
15 0 0
20 0 0
35 0 0
50 0 0

sunflower
5 0 0

10 0 0
15 0 0
20 0 0
35 0 0
50 0 0

hazelnut
5 1 1

10 0 0
15 0 0
20 0 0
35 0 0
50 0 0

Figure 4. Final positions of the neurons (•) and the validation sample
(red open diamonds) (235 samples) (1, 6, 10, 23-25).

Figure 5. Final positions of the neurons (•) and the validation sample
(solid red squares) corresponding to EVOO adulteration with seed oil (28
samples) (8).

Mj ) ∑
i

S
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Once the topology and distance of the SOM were selected,
the dimension of the network was optimized. Networks of sizes
ranging from 18 × 18 to 26 × 26 were tried (12). From 20 ×
20 up to 26 × 26 dimensions, the performance of these maps
(number of misclassifications) was somewhat similar. Therefore
the 20 × 20 dimension was selected.

With the selected topology, distance and the optimized
network dimension, the parameters of the SOM model were
optimized by a Central Composite Design 25 + star experimental
design, where the variables analyzed were OLr (from 0.1 to 1),
OP (from 500 to 1500), TLr (from 0.01 to 0.03), ND (from 0.5
to 1.5) and the number of epochs in the learning process (from
10000 to 30000 epochs). The response of the experimental
design was the number of incorrect classifications of the oil
samples from the verification sample. In order to reach the least
number of misclassifications, the optimum parameter values
have been fixed at 0.1, 1500, 0.01, 0.5, and 30000 to OLr, OP,
TLr, ND and the number of epochs necessary in the learning
process, respectively.

The weight vectors used to classify the input data are shown
in Figure 3. As can be seen, throughout the learning process,
the competitive neurons have been adequately distributed in
whole three-dimensional space (from Figure 3a,b), and there-
fore, every data set would be classified by one or a group of
neurons, Figure 3b. The number of misclassifications depending
on the oil type is shown in Table 2. The only misclassification
consisted of a hazelnut sample which was classified as EVOO.
This mistake is based on their similar chemical composition
(29). As the verification sample was formed and fixed at 38
samples and only three of them correspond to this oil, the
percentage of misclassified hazelnut oil samples is high (>34%).
Given that a wider database is required to study this point in
more detail, the SOM model’s capacity to carry out classification
will be tested in the external validation process. Nevertheless,
overall, the number of misclassifications is less than 3%.
Therefore, in the light of these results, this type of map is able
to classify nearly all input data used in the internal
validation.

Learning Vector Quantification Network Optimization.
The LVQ model consists of unsupervised and supervised la-
yers. The former is a competitive network similar to the SOM
model. This part, formed by the input and hidden neurons (also
called the number of competitive neurons), is fixed at three and
20 × 20, respectively, as has been described in the Self-
Organizing Map Optimization section. The supervised layer
consists of an output layer with 13 neurons, one for each oil
type.

In the light of these considerations, the only LVQ parameter
to optimize is the learning rate (Lr). In the optimization process,
Lr was tested between 1 × 10-3 to 1. Taking into account that
the minimum number of misclassifications is required, the best
Lr value was 0.01. This is in agreement with the literature (21).
As was mentioned above, although the number of misclassifi-
cations of hazelnut oil with respect to the whole verification
sample is less than 3%, the LVQ capability to classify samples
of hazelnut oil cannot be assumed. This point will be studied
in the external validation.

Application of Optimized SOM and LVQ Models to
Others Databases. In order to validate the optimized SOM and
LVQ models, the external validation process has been carried
out using six bibliographical databases (235 samples), Table
3 (1, 6, 10, 23-25). In addition, analytical values from mixtures
of EVOO and edible oils (28 samples) were also used to test

the reliability of the aforementioned models in the EVOO
adulteration detection (8).

As mentioned previously, in order to guarantee the reliability
of the classifications carried out by these models, the applicabil-
ity domain has been evaluated selecting the compounds with
cross-validated standardized residuals greater than three standard
deviation values (27, 28). In this evaluation applied to validation
sample, no response outlier was found. Then, the validation
sample was input into the SOM and LVQ models, Figure 4.
As can be seen, overall, only one input data set is not adequately
represented by the optimized SOM and two competitive neurons
are not used to classify some input data sets. As can be expected,
the number of misclassifications in the external validation
process is higher than those in the internal validation. Neverthe-
less, as the misclassification percentage is less than 5%, the
tested models are able to classify vegetable oils adequately.
Given that the LVQ model is partially based on the SOM model,
the results are similar. Although the misclassification percentage
is slightly higher (<5.5%), the LVQ model has the advantage
in that the classifications are organized by the user. To recap,
the models tested are able to classify all oil types, even the
hazelnut oil samples.

Finally, the capacity to detect adulteration of EVOO with
seeds oils has been tested (8). As can be seen in Figure 5, all
28 samples are adequately represented by the optimized SOM
or LVQ models. In particular, using these methods, the
adulteration with corn, soya, sunflower, and hazelnut oils can
be detected when their respective concentrations are higher than
10, 5, 5, and 10%. In the case of hazelnut adulteration, these
results are similar to those published in the literature (11). But
here, thanks to the nonlinear models applied, the required
information is notably less. It is certain that the result would
have been notably improved if a SOM or LVQ model had been
specifically designed for oil mixtures and had been focused on
determining adulteration. In particular, if the optimization of
both models focus on detecting one type of adulteration (e.g.,
with hazelnut oil) in a narrower range of concentrations (less
than 10%), the results will be notably improved.

Conclusions. In this work, two mathematical approaches
based on self-organizing maps and learning vector quantifica-
tions networks models have been designed to classify samples
in 13 classes of vegetable oils and detect adulterations of extra
virgin olive oil. These points have been developed using only
three of the chemicals present in most vegetable oils. To test
these models internal and external validations were carried out.
In the internal and external validations, less than 3 and 5.5% of
the samples were misclassified. The adulteration of EVOO with
corn, soya, sunflower, and hazelnut oils was detected when their
concentration was higher than 10, 5, 5, and 10%, respectively.
In the light of these results, both models are adequate to classify
these studied samples in 13 types of vegetable oils. Although
the results could be improved by specifically designed models
for the adulteration databases, the results reached here are
promising.

The results show a way to identify vegetable oils or to
determine the protected denomination of origin, and in addition,
the techniques proposed are suitable to detect adulteration at
relatively low concentrations.
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